Chemical Quality of Bottled Waters: A Review

Malwina Diduch, Żaneta Polkowska, and Jacek Namieśnik

Abstract: Bottled water has become very popular for quenching thirst and as a dietary (mineral) supplement. The plethora of natural mineral waters precludes any unequivocal system of classification, which makes it difficult for the consumer to choose a water with properties that suits him/her exactly. The ever-increasing popularity of bottled waters means that it is of the utmost importance to determine not only their mineral content, but above all, the content of possible contaminants, especially organic ones. In this respect bottled waters are a special case, because apart from organic contamination from the environment, the water may become secondarily contaminated as a result of its being improperly transported and stored. Pesticides, volatile organic compounds, and carbonyl compounds have been detected in samples of bottled water. This overview shows the available published information on levels of inorganic constituents and organic contaminants in samples of bottled water in the context of sample preparation procedures and analytical techniques.

Keywords: analytical techniques bottled water, chemical composition, classification

Introduction

Just 15 to 20 y ago, water in a plastic bottle was not a regular item on many consumers' shopping lists. Today, however, thousands of millions of liters of water are sold in all types of packaging and containers. The mineral water market is the most dynamically expanding branch of the nonalcoholic beverage sector (Bong and others 2009). There are many reasons for this ever-increasing popularity of bottled water. For example, success can be attributed to effective marketing strategies. Drinking water out of a bottle not only quenches one's thirst, but it is equated with a hygienic lifestyle, fitness, health, and good looks as well (de Beaufort 2007). The sales campaigns of food conglomerates have discouraged people from drinking municipal water, even though it is subjected to very much the same rigorous quality requirements as bottled water.

Bottled water is also frequently chosen as an alternative to municipal water for reasons of taste and smell, because in most countries of the world water cannot be disinfected by chemical means. Bottled water, in contrast, can be bought not only in every food shop but also at most service points. The demand for bottled water is completely independent of the supply of municipal water, which is frequently of identical, if not even higher, quality. Suffice it to say that sales of bottled water are greatest in highly developed countries, where tap water is of high and even very high quality. Against this, a single bottle of *Evian* water costs as much as it would to fill it with municipal water once a day for more than 10 years! On average, a liter of bottled water is from 250 to 600 times more costly than a liter of tap water.

A serious environmental problem connected with the constantly rising consumption of bottled water is the bottles in which it is sold. Because of their immense numbers, they are littering the world all over and have become the most troublesome item of rubbish at the present time (Coelho and others 2011). Most

MS 20110570 Submitted 5/4/2011, Accepted 7/29/2011. Authors are with Dept. of Analytical Chemistry, Chemical Faculty, Gdańsk Univ. of Technology GUT, Narutowicza Street 11/12, 80-233 Gdańsk, Poland. Direct inquiries to author Diduch (E-mail: malwina.jakubik@gmail.com).

water bottles are produced from polyethylene terephthalate (PET), which in itself is an innocuous substance and is recyclable but not biodegradable (Hansen and Pergantis 2006). However, only 23% of PET bottles are recycled in the USA, and approximately 17% in Poland (Benefits of Recycling). To produce 38 thousand million plastic containers for bottled water consumed in the USA in 2006 alone, one and a half million barrels of crude oil was needed, not to mention the fuel required for transportation around the country.

Classification of mineral waters

The very concept of "mineral water" was first defined, at the International Balneological Congress at Nauheim, Germany, in 1911, as water containing at least 1000 mg of dissolved mineral constituents per liter, and this norm was accepted by all the countries represented at the Congress. Over the next 80 y or so this definition was changed many times, resulting in waters with a lower mineral content also being labeled "mineral"; by 1990 the acceptable level had fallen to 200 mg/L [PL-BN]. Consequently, the market became flooded with pseudo-mineral waters. In spite of disclaimers in various directives playing down this reduction in mineral content, most bottled waters are still falsely labeled "mineral waters"; in fact, only about 30 of the more than 200 brands on the market in Poland deserve this name.

To a very great extent, the composition of subterranean water depends on the type and structure of the rocks with which it comes into contact. The multifarious minerals forming the Earth's crust, as well as the various hydrogeochemical processes (sorption, oxidation and reduction, leaching, weathering, hydrolysis) and physical parameters (temperature, pressure) affecting these processes, have given rise to an immense diversity of mineral waters.

This makes it impossible to draw up a uniform system of classification, even if the only criterion is the chemical composition. Analysis of the sum of all the mineral constituents of water permits a classification based on the degree of mineralization (mineral content) (Table 1). This categorization can be extended by basing it on the content of specific constituents, which are chemical elements or compounds with proven physiological or medicinal activity (Table 1). The better known among these are

iron, bromine, iodine, manganese, and carbon dioxide (van der Aa

Depending on the concentrations at which they are present, some of the constituents of water impart specific properties to the water. On this basis we can distinguish waters of varying hardness, salinity, or CO₂ saturation (Table 1). The temperature of the water is also a significant parameter, on the basis of which cold and thermal waters are differentiated; the latter can be further subdivided into tepid, warm, and hot waters (Table 1) (van der Aa 2003).

Natural mineral waters are classified according to geological, hydrogeological, physicochemical, and microbiological criteria. Pharmacological, physiological, and clinical criteria are also taken into account if the natural properties of the water justify this (Petraccia and others 2006). Water can be admitted for consumption only when the concentrations of its constituents do not exceed the norms specified in the table showing the various legal regulations (Table 2). When these norms are established, nutritional standards and the highest permissible levels (limiting values) in the case of harmful or potentially toxic substances have to be taken into account (Güler 2007).

The Problems and Challenges Posed by the Analysis of Bottled Waters

Subterranean waters, the main source of mineral waters, have fairly constant physicochemical properties, and their composition is the result of the interplay of numerous hydrogeochemical processes. Anthropogenic contamination is not of the same importance for such waters as it is for surface waters. A real danger for the quality of subterranean waters, however, is their overexploitation, which may increase the inflow of adjacent surface waters. It is also worth remembering that, in many countries, access to subterranean waters is very limited; there, the main source of bottled water is desalinated sea water (Al-Mudhaf and others

The challenge now facing analytical chemists is to develop a method for the qualitative and quantitative determinations of the wide range of analytes present in bottled waters. Determining the content of inorganic and organic compounds is difficult, mainly because of

- the low levels of individual compounds present in samples,
- the complex composition (high degree of mineralization),
- interactions between the constituents present in samples,

Table 1-Classifications of mineral waters.

Type of water	Parameter	Unit	Reference
Criterion: mineral content			
Very low mineral content	Total content of mineral salts < 50	mg/L	(van der Aa 2003)
Low mineral content	Total content of mineral salts 50-500	S	,
Medium mineral content	Total content of mineral salts 500-1500		
High mineral content	Total content of mineral salts >1500		
Criterion: content of specific co	nstituents		
Chloride	Chlorides > 200	mg/L	(van der Aa 2003)
Bicarbonate	Bicarbonates > 600	S	,
Sulfate	Sulfates > 200		
Sodium	Sodium > 200		
Calcium	Calcium > 150		
Magnesium	Magnesium > 50		
Iron	Iron > 1		
Bromide	Bromide > 5		
Iodide	Iodide > 1		
Manganese	Manganese > 1		
Oxalic	$CO_2 > 250$		
Fluoride	Fluoride > 1		
Sulfide	Sulfide > 1		
Arsenic	Arsenic > 0.7		
Criterion: salinity	Thomas of		
Fresh	Cl < 5	mg/L	(van der Aa 2003)
Slightly saline	Cl 5–30	g, 2	(vair der 11a 2000)
Saline	Cl 30–150		
More saline	Cl 150–300		
Very saline	Cl 300–1000		
Mineral	Cl 1000–10000		
Criterion: hardness	G. 1000 10000		
Very soft	Ca + Mg = 0 - 0.5	mEq/L	(van der Aa 2003)
Soft	Ca + Mg 0.5 -1	q, 2	(vair der 11a 2000)
Medium hard	Ca + Mg 1–2		
Hard	Ca + Mg 2-4		
Very hard	Ca + Mg > 4		
Criterion: CO ₂ saturation	Ca Mg · I		
Unsaturated	No CO ₂	mg/L	(van der Aa 2003)
Slightly saturated	$CO_2 < 1500$	mg/ E	(vair der 11a 2005)
Medium saturated	CO ₂ 1500–4000		
Highly saturated	CO ₂ 4000–6000		
Criterion: temperature	302 1000 0000		
Cold	< 20	°C	(Petraccia and others 2006
Thermal		C	(1 ctraceta and others 2000
Tepid	20-30		
Warm	30–40		
Hot	40		
1100	TV		

- possible changes in composition during transport and storage as a result of reactions and the potential desorption of constituents from packaging materials, and
- the interdependence between constituents present in samples (for example, the Ca:Mg ion ratio).

Method for determining the organic and inorganic constituents of bottled waters

It is frequently the case that quality control of bottled water is limited to the determination of the levels of inorganic constituents such as the anions Br⁻, BrO₃⁻, Cl⁻, ClO₃⁻, ClO₄⁻, F⁻, I⁻, $NO_2^-,\ NO_3^-,\ SO_4^{2-},\ PO_4^{3-},\ HCO_3^-;$ the cations $Na^+,\ K^+,$ NH₄⁺, Mg²⁺, Ca²⁺ (Azoulay and others 2001; Saleh and others 2001; Rosborg and others 2005; Morr and others 2006; Bong and

others 2009); and certain metals, Be, Cd, Cr, Cu, Hg, Fe, Mg, Mn, Ni, Se, Sr, V, Zn, Co, Hg, Pb, Th, U, Li, As, Al, Ba, Bi, Zr, Sn, Rb, Sb, Sc, Te, Tl (Al.-Saleh and Al.-Doush 1998; Saleh and others 2001; Ikem and others 2002; Costa and others 2003; Baba and others 2007; Shotyk and Krachler 2007a, 2007b; Westerhoff and others 2008; Keresztes and others 2009; Krachler and Shotyk 2009). Other elements, such as boron, are rarely determined. Table 3 provides data on the analytical techniques used for determining the inorganic constituents of bottled water.

The information available in the literature on the analytical techniques for determining the concentrations of organic compounds in bottled mineral waters is of fairly recent date, the first information on this subject having appeared in 2002. But the problem probably existed long before mineral water began to be sold in

Table 2-Regulations and standards for water intended for human consumption.

Parameter	Unit	ECC ^a (1998) Drinking water (MAC) ^b	ECC ^a (2003) Bottled water (MAC) ^b	WHO ^a (2008) Drinking water (GV) ^c	Drinking	IBWA ^a (2009) Bottled water (SOQ) ^e	Bottled	Polish legalization Dz. U. Nr 276, poz, 2738 ^a (2004) Bottled water (MAC) ^b
Disinfectants and disinf	ection	by products						
Bromate	mg/L	0.01	_	0.01	0.01	0.01	0.01	_
Chlorine	mg/L	_	_	$5^{\rm f}$	0.1	0.1	4.0	_
Chlorite	mg/L	_	_	0.7^{f}	1	1	1	_
Haloacetic acids	mg/L	_	_	_	0.06	0.06	0.06	_
Total trihalogenometals		0.1	_	1	0.08	0.01	0.08	_
Inorganic chemicals	0							
Aluminum	mg/L	0.2	_	_	_	0.2	0.2	_
Amonium	mg/L	0.5	_	_	_	_	_	2
Antimony	mg/L	0.005	0.005	0.02	0.006	0.006	0.006	0.005
Arsenic	mg/L		0.01	$0.01^{\rm f}$	0.01	0.01	0.01	0.01
Barium	mg/L	_	_	0.7	2	1	2	1
Bervllium	mg/L	_	_	_	0.004	0.004	0.004	_
Boron	mg/L	1	1	0.5^{f}	_	-	-	5
Cadmium	mg/L	0.005	0.003	0.003	0.005	0.005	0.005	0.003
Chloride	mg/L	250	-	0.005	-	250	250	250
Chrome	μg/L	0.05	0.05		0.1	0.05	0.1	0.05
Copper	mg/L	2	1	2	1.3^{g}	1	1	1
Cyanide	mg/L	0.05	0.07	0.07	0.2	0.1	0.1	0.07
Fluoride	mg/L	1.5	5	1.5	4.0	see	see	5
Iron	mg/L	0.2	_	-	4. 0	0.3	0.3	0.5
Lead	mg/L	0.01	0.01	0.01	0.015^{g}	0.005	0.005	0.01
Manganese	μg/L	0.05	0.5	0.4 ^f	0.013	0.003	0.003	0.5
Mercury	μg/L mg/L	0.001	0.001	0.006	0.002	0.001	0.002	0.001
Molybdenum	-	0.001	0.001	0.006	0.002	0.001	0.002	0.001
Nickel	mg/L	0.02	0.02	0.07	_	0.1	0.1	0.02
	mg/L	50	50	50	10 ^h	10	10	50
Nitrate	mg/L		0.1	$0.2^{\rm f}$	10 1 ^h	10	10	0.1
Nitrite	mg/L	0.5			-	0.01		
Selenium	mg/L	0.01	0.01	0.01	0.05		0.05	0.01
Silver	mg/L	-				0.025	0.1	
Sodium	mg/L	200	_	_	_	_	-	200
Sulfate	mg/L	250	_	_	-	250	250	250
Thallium	mg/L	_	_	-	0.002	0.002	0.002	_
Uranium	mg/L	_	_	$0.015^{\rm f}$	0.03	0.03	0.03	_
Zinc	mg/L	_	_	_	_	5	5	1
Organic chemicals	,-	0.0004		0.000=				
Acrylamide	mg/L	0.0001	_	0.0005	-	-	-	_
Benzene	mg/L	0.001	_	0.01	0.005	0.001	0.005	_
Total pesticides	μ g/L	0.5	_	_	_	_	_	0.5
PAHs	μ g/L	0.1	_	_	_	_	_	0.1
Phenolics	mg/L	_	_	_	_	0.001	0.001	0.002

^a Sources (see References): EEC = European Economic Community; WHO = World Health Organization; EPA = US Environmental Protection Agency; IWBA = International Bottled Water Association; FDA = U.S. Food and Drug Administration; Dz. U. Nr 276, poz. 2738 (Official acts of Polish Government).

Maximum admissible concentration. Guideline value.

d Maximum contaminant level.

Standard of quality.

f Provisional guideline value.

Action level.

h Measured as nitrogen.

plastic bottles, as evidenced by the ubiquity of organic compounds in the various compartments of the environment. The following groups of organic compounds have been determined in samples of bottled water: pesticides, volatile organic compounds, perfluorinated carbon compounds, and carbonyl compounds (Nawrocki and others 2002; Ericson and others 2008; Greulich and Alder 2008; Al-Mudhaf and others 2009; Diaz and others 2009). Table 4 gives data on the analytical procedures for determining organic compounds in bottled waters.

Levels of Target Inorganic and Organic Constituents of Bottled Waters

Inorganic constituents (natural and contaminants) of bottled waters

The analytical results given in the literature (Table 5) show the breadth of the range of parameters determined in bottled waters. The differences in the compositions of particular waters are very evident. This is the direct result of the geology of the region from which the water is drawn, and also of the legislation in force in a particular country. The differences in mineral content directly affect the taste and odor of the water. Bottled waters are perceived by many to taste better, have fewer impurities, and to confer higher social status on the consumer than does tap water (Saad and others 1998). Mineral water is also often used as a replacement for tap water, which is always chemically disinfected (Nawrocki and others 2002).

The main dangers to the quality of subterranean water that are sources of bottled water stem from area pollution caused by the application of agricultural chemicals, the lack or malfunction of sewage disposal systems, negligently planned landfill sites, and the insufficient number and poor efficiency of sewage treatment plants, effluent basins, sewage ponds, and poorly designed and executed

petrol stations. Line-level sources can also include leaking pipes, gas mains, and sewers (Polkowska 2003).

Organic contaminants in bottled waters

Bottled mineral waters are a special case as far as the analysis of organic contaminants is concerned. Apart from substances derived from various compartments of the environment, like pesticides (Greulich and Alder 2008; Diaz and others 2009;) and perfluoro derivatives (Ericson and others 2008), as well as those that can form during the treatment of water (Al-Mudhaf and others 2009), the material from which the bottle or container is made can also constitute a source of contamination (Nawrocki and others 2002). Table 6 lists the levels of organic contaminants determined in bottled waters.

PET is the usual material from which bottles for mineral water are made. Studies of the possible migration of PET degradation products have shown that if bottled water is stored at elevated temperatures or exposed to sunlight, the aldehyde content in the water increases (Nawrocki and others 2002). Moreover, the size of the bottle is of greater concern. Water stored in small-capacity bottles (0.2 to 0.25 L) contains more contaminants than that in bottles of larger capacity (1.5 L). It has also been demonstrated that the bottle material degrades faster if the water is carbonated (Azoulay and others 2001; Burlingame 2003; Bong and others 2009).

Studies of the possible degradation of the polymers from which bottles are made is of major importance, because in developing countries a process known as solar disinfection is frequently used to rid the water of microorganisms. This is a simple, cheap, and effective method: the bottle is filled with water, capped, then exposed to solar radiation for 15 to 18 h (Schmid and others 2008).

Table 3-Analytical techniques for determining inorganic constituents.

Parameter	Type of water	Analytical technique	Validation parameters	Reference
Be, Cd, Cr, Cu, Hg, Fe, Mg, Mn, Ni, Se, Sr, V, Zn	Bottled	ICP-PED	Detection limit (μg/mL)	(Al-Saleh and Al Doush 1998)
Ag, Al., As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Na, Pb, Th, U, Zn Ca, K, Mg, Na	Bottled	ICP-OES	-0.000098-0.018	(Ikem and others 2002) (Rosborg and others 2005)
Sb Ag, Al, As, B, Ba, Be, Bi, Br, Ca, Ce, Cd, Co, Cu, Cr, Cs, Fe, Ge, Hg, I, Li, Mg, Mn, Mo, Na, Pb, Rb, Se, Sb, Sc, Sr, Te, Ti, Tl, Th, U, V,W, Zn, Zr	Bottled	ICP-MS	Detection limit (μg/L) 0.004–0.028 – Detection limit (μg/L) 0.01–10 Recovery (%) 91.6–111 Detection limit (μg/L) 0.001–26	(Westerhoff and others 2008) (Krachler and Shotyk 2009) (Saleh and others 2001) (Rosborg and others 2005)
Al, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, La, Mn, Ni, Pb, Sb, Sn, Sr, Ti, U, Zn, Zr	Bottled (c, nc)	ICP-AES	-	(Baba and others 2007)
Ca, K, Mg, Na	Bottled		-	(Bong and others 2009)
Sb	Bottled (c, nc)	ICP-SF-MS	Detection limit (pg/mL) 0.7	(Keresztes and others 2009)
NO ₃ -N	Bottled	FIA	Detection limit (μ g/L) 60	(Rosborg and others 2005)
F, Cl, SO ₄ –S Br, BrO ₃ ⁻ , Cl, ClO ₃ ⁻ , F, I, NO ₂ ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ , PO ₄ ³⁻ Cl, NO ₃ ⁻ ,SO ₄ ²⁻ ,HCO ₃ ⁻	Bottled	IC-CD	Detection limit (µg/L) 100–190 –	(Rosborg and others 2005) (Saleh and others 2001, Liu and Mou 2004) (Bong and others 2009)
Ba, Ca, Cr, Cu, Ge, K, Mn, Ni, Pb, Rb, Sr, Ti, Zn	Bottled (c, nc)	STR-XRF	Detection limit (μ g/L) 0.02–22.2	(Costa and others 2003)
As, Ca, Cd, Cu, K, Mg, Na, P, Se, Zn	Bottled	MIP-MS	_	(Chiba and others 2006)
ClO ₄ ⁻	Bottled	ESI-MS-MS	_	(Shi and others 2007)

c = carbonated, nc = noncarbonated.

Table 4-Analytical techniques for determining organic constituents.

Parameter	Type of water	Sample preparation	Analytical technique	Reference
Pesticides α-HCH β-HCH β-HCH δ-HCH	Bottled 1.5-19L	A 500 mL aliquot of each bottled water sample was transferred to a separating funnel, then extracted by shaking with 75 mL of ether–hexane (25%, v/v). Separately another 500 mL aliquot was extracted	GC-ECD	(Diaz and others 2009)
Aldrin DDD DDE DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin		with 75 mL of hexane and the two extracts combined so that 1 L of sample was extracted in total. The organic phase was passed through anhydrous sodium sulfate to remove remnants of water then the samples evaporated in a rotary evaporator to 5 mL.		
Endrin aldehyde Volatile organic compounds				
1,2,4-Trimethylobenzene 1,2-Dichloropropanne 1,3,5-Trimethylobenzene 1,3-Dichlorobenzene Bromodichloromethane Bromoform Chloroform Dibromomethane Ethylbenzene iso-Propylbenzene Xylene Naphthalene Styrene Toluene Trichloroethene Chloral-hydrate Trichloropropanone Dichloroacetonitrile	Bottled	In this method, VOCs and surrogates with low water solubility are extracted (purged) from the sample matrix by bubbling helium gas through the aqueous sample. Purged sample components are trapped in a tube containing suitable sorbent materials. When purging is complete, the sorbent tube is heated and backflushed with helium to desorb the trapped sample components into a capillary GC column interfaced to the MS. Bottled water was directly analyzed without the addition of sodium thiosulfate. The US Environmental Protection Agency (EPA) method 52.2 with some modifications was employed for purge and trap extraction of THMs and analysis by gas chromatography/mass spectrometry.	GC-MS	(Leivadara and others 2008, Al-Mudhaf and others 2009, Ahmad and Bajahlar 2009, Ikem 2002, Saleh and others 2001)
Haloacetic acid Formic acid Dichloroacetic acid Ethanedioic acid	Bottled (purified, mineral,	Samples were filtered with 0.45 μ m filters. One hundred-milliliter polytetrafluoroethylene (PTFE) beakers were used for sample concentration. The	IC-ED	(Liu and Mou 2003)
Antioxidant	natural)	beakers were cleaned a 150 W AS3120A sonicator.		
Butylated hydroxytoluene	Bottled 0.5–2L	Solid-phase micro extraction (SPME) was implemented and applied for the extraction of BHT 2.2 from water samples and further determination by capillary gas chromatography—mass spectrometry. Used an SPME manual holder and fiber assembly with a 100 mm polydimethylsiloxane film, and an amber screw-top vial with white PTFE—silicone septa. The fiber was exposed to 15 mL aliquots (maximum capacity). Extractions were performed at room temperature (20 to 25 °C). The expon time was 30 min.	GC-MS	(Tombesi and Freije 2002)
4-Nonylphenol bisphenol A triclosan	Bottled (mineral, pure)	Before extraction, the pH value of each water sample was adjusted to 3 using 4 M $\rm H_2SO_4$ and 50 mL of HPLC-grade methanol was added into the water to increase extraction efficiency. And 100 μ L each of 1 mg/L of 4-n-NP, BPA-d16 and 13C-TCS were spiked into each sample as internal standards. The cartridges were conditioned by 10 mL of methanol and 10 mL of Milli-Q water. Then water samples passed through the SPE cartridges at a flow rate of 10 mL/min. After loading of the samples, the cartridges were dried under vacuum for 2 h. The analytes were eluted from the cartridges using 8 mL ethyl acetate. The eluates were concentrated to dryness under a gentle stream of nitrogen, and then redissolved in methanol to a final volume of 1 mL. Each final extract was filtered through a 0.45 μ m membrane filter into a 2 mL amber glass vial and kept at -18 °C until analysis. First, 100 μ L of the final extract in methanol was transferred to the test	GC-MS-NCI	(Li and others 2010)

Table 4-Continued

Parameter	Type of water	Sample preparation	Analytical technique	Reference
		tube and the solvent was dried under a gentle nitrogen stream. Secondly, 2 mL of 1 M NaHCO ₃ and 1 mL of 1 M NaOH were added. After shaking for 30 s, 2 mL of n-hexane, 50 μ L of 10% pyridine in toluene and 50 μ L of 2% PFBOCl in toluene were added. The tube was tightly capped and handshaken violently for 1 min. After the organic phase and aqueous phase were separated thoroughly, the organic phase was transferred to a 5 mL glass centrifuge tube using a glass pipette. Third, 2 mL of n-hexane was added to the 10 mL tube for a second extraction. The tube was handshaken for 1 min, and the other procedures were the same as in the second step. After separated, the supernatant was transferred to the aforementioned 5 mL glass centrifugal tube. Then the combined n-hexane mixture was dried under a gentle nitrogen stream. Finally, the extract was redissolved in 100 μ L of n-hexane, and then transferred to a 2 mL amber glass vial with a 250 μ L flat-bottomed insert, which was ready for GC-NCI-MS analysis.		
Perfluorochemicals PFBuS PFDA PFDoDA PFDoS PFHpA PFHxA PFHxS PFNA PFOA PFOS PFOSA PFTDA PFUnDA THPFOS	Bottled	Samples were filtered with glass microfiber filters. Samples were concentrated using solid-phase extraction. Briefly, 500 mL of water were used for extraction after adjusting the pH to 4 using an HCl solution. Extraction standards, 13C4-PFOS and 13C4-PFOA, and 10 mL of methanol (MeOH) were added. After 10 min, water samples were loaded onto Waters Oasis WAX single use cartridges (6 cm³/150 mg) previously conditioned with 4 mL MeOH and 4 mL water. Vacuum was used to speed up the concentrations of water samples. After drying, SPE cartridges were eluted with 4 mL acetate buffer solution (discarded) and 2 mL 2% NH4 in MeOH (target fraction). This fraction was filtered (2 μm nylon filter) and evaporated under nitrogen. The final volume was set to 500 μL including 13C5-labeled PFNA added as performance standard and 300 μL of 2 mM sodium acetate in water.	HPLC-MS	(Ericsson and others 2008)
Formaldehyde Acetaldehyde Acetone	0.5–1.5 L; c, nc	acetate in water. 20 mL of water samples were collected in glass vials with glass caps. One milliliter of 1 mg/mL aqueous PFBOA solution was added to the sample and kept at room temperature for 1 h, then 2 drops of concentrated sulfuric acid were added to complete the derivatization reaction. The extract was then purified with 3 mL of 0.2 N sulfuric acid solution. The hexane layer was separated and transferred to vials containing approximately 50 mg of sodium sulfate to dry the extract	GC-ECD	(Nawrocki and others 2002)

Summary

Bottled water is a product that is purchased by annually increasing numbers of people of all age groups. The quality control of mineral waters tends to concentrate on the determination of anion and cation levels, since it is these that govern the taste, odor, and possible nutraceutical properties of the water. The diversity of mineral waters causes problems in drawing up a uniform classification system that would make it easier for the consumer to choose a water suitable for his/her individual needs. In addition, the broad spectrum of inorganic constituents in mineral waters precludes the application of any one particular analytical technique. Ion chromatography remains the most popular method of determining the levels of ions in such waters.

The constantly rising sales of mineral waters bring with them ever-increasing exploitation of their sources. The consequences of this include deterioration in the quality of subterranean wa-

ters, for example, as a result of the inflow of adjacent ground waters, which are often exposed to anthropogenic contamination. The implication is that not only the mineral content but also the levels of possible organic contaminants must be subjected to constant quality control measures. If bottled water is not stored under the right conditions, that is to say, if it is exposed to high temperatures and/or sunlight, it can become contaminated by the degradation products of the material from which the bottle was made. This is a fairly new problem. Techniques such as GC-ECD, GC-MS, and HPLC-MS are used to determine organic contaminants in samples of bottled water. Emptied bottles are a serious danger to the environment. They are constantly increasing in number, yet no system for their reuse has met with approval. It is still the case that only a small fraction of them is recycled, which makes them one of the most troublesome items of refuse.

Table 5-Levels of inorganic constituents in bottled waters (literature information).

Country	Brand	Type of water	Parameter	Range	Unit	References
Europe England	Abbey Well Aqua-Pura Brecon Carreg Buxton Chiltern Highland Spring Strathmore	lm	Ca Mg Na	39–114 1–36 6–46	mg/L	(Azoulay and others 2001)
Austria	Montes	c	Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ ²⁻	8157 1059 28331 443 4056 4309 86.7 407	μg/L	(Bong and others 2009)
	Romerquelle Voslauer	mm lm	Ca Mg Na Ca	146 65 13 57	mg/L	(Azoulay and others 2001)
Belgium	Bru	lm	Mg Na Ca Mg	37 5 23 23	mg/L	(Azoulay and others 2001, Morr and others 2006)
	Chaudfontaine	m	Na Ca Mg	10 65 18		Morrald outers 2000)
	Duke Leberg	S	Na Ca Mg Na	44 10–112 6–47 5–10		
	Valvert	lm	Ca Mg Na	67.7–68 2 1.9–2		
Finland	Vichi original Vichy Nouvelle	mm lm	Ca Mg Na Ca Mg	100 110 220 70 110	mg/L	(Azoulay and others 2001)
France	Aix les Banes	m	Na Ca Mg Na	1 72 38 14	mg/L	(Saleh and others 2001, Bong and others 2009, Azoulay and others 2001, Morr and others 2006)
	Badoit Contrex	mm	Ca Mg Na	200–467 84–100 7–160		
	Eau de Source-Oliviers	m	Ca Mg Na	157 21 14		
	Evian	s. plastic	Al Ca Cd Cl Co Cr Cu Fe Hg K Mg	0.006 0.05 < 0.2 18 1 < 0.2 < 0.2 < 0.2 1.09 51 27.3 1-24	μg/L mg/L μg/L mg/L μg/L	
			Mn Na SO ₄ ²⁻ U Zn	5 5–6.38 2.29 4 8	μg/L mg/L μg/L	
	Perrier	lm. nc	Ca Ca Cl	78 4538–147000 474	mg/L μg/L	

Table 5-Continued

Country	Brand	Type of water	Parameter	Range	Unit	References
			HCO ₃ ⁻ K Mg Na NO ₃ ⁻	1171 27.4 254–4000 535–14000 103		
	Prince Noir	m	SO ₄ ^{2–} Ca Mg Na	424 528 78 9	mg/L	
	SaintYorre Vichy Celestins	hm	Ca Mg Na	100–176 9–160 900–1200		
	Vittel Bonne Sources	lm	Ca Mg Na	91 20 7		
	Vittel Grande Source Vittel Hepar	mm	Ca Mg Na	202–575 36–118 3–13		
	Volvic	lm	Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ ²⁻	299–10000 438–442 1323–1352 137–145 344–6100 502–9400 119–120 88.5–89.6	μg/L	
Spain	Font Vella Fonter	lm	Ca Mg Na	26–35 5–7 11–12	mg/L	(Azoulay and others 2001)
	Salus Vidago	mm	Ca Mg Na	78 10 660		
	San Narciso Vichy Catalan	hm	Ca Mg Na	33–53 8–9 1120–1133		
	Viladru	lm	Ca Mg Na	16 2 9		
Ireland	Ballygowan Glenpatrick Spring Tipperary	lm	Ca Mg Na	37–114 15–23 12–25	mg/L	(Azoulay and others 2001)
Iceland	Thorspring	lm	Ca Mg Na	6 1 8	mg/L	(Azoulay and others 2001)
Germany	Apollinaris	mm, c	Ca Cl HCO3 ⁻ K	2.7–89 3660 31778 893	mg/L μg/L	(Azoulay and others 2001, Morr and others 2006)
			Mg Na NO ₃ ⁻ SO ₄ ²⁻	5.9–104 23–425 78.1	mg/L μg/L	
	Azur	m	SO ₄ ^{2–} Ca Mg Na	1023 177 29.9 176	mg/L	
	Fachingen	mm	Ca Mg Na	113 62 500		
	Gerolsteiner	c	Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ ²⁻	2610-2991 127-135 7262-7353 10.5-11.6 1319-1447 144-161 171-182 167-184	μg/L	
	Gerolsteiner Sprudel Hassia Sprudel	mm	Ca Mg Na	176–364 36–113 119–232	mg/L	

Table 5-Continued

Country	Brand	Type of water	Parameter	Range	Unit	References
	Hella	lm	Са	51		
			Mg	4		
	Kaiser Friedrich	la san	Na Ca	8 5		
	Raiser Friedrich	hm	Ca Mg	4		
			Na	1419		
	Peterstaler	mm	Ca	216-256		
	Rippoldsauer		Mg	37–128		
	Robacher St. Michaelis	lm	Na Ca	40–215 43		
	St. Iviiciiaens	1111	Mg	4		
			Na	21		
	Uberkinger	hm	Ca	26		
			Mg	17		
			Na	1180		
Poland	Krystynka	hm	Ca	176	mg/l	(Azoulay and others 2001)
			Mg Na	60 900		
	Nałęczowianka	mm	Ca	119		
			Mg	21		
			Na	24		
Portugal	Pedras Saldagas	mm	Ca	132	mg/L	(Azoulay and others 2001)
			Mg	9		
			Na	550		
Słovenia	Radenska	mm	Ca	217	mg/L	(Azoulay and others 2001)
			Mg Na	97 470		
					7.7	
Switzerland	Aproz	mm	Ca Ma	454 67	mg/L	(Azoulay and others 2001, Bong and others 2009)
			Mg Na	8		Bong and others 2009)
	Cristalp	lm	Ca	115	mg/L	
	•		Mg	40	C	
			Na	20		
	Heidiland	С	Ca Cl	2941 42.3	$\mu \mathrm{g/L}$	
			HCO ₃ -	1405		
			K	14.2		
			Mg	1642		
			Na	189		
			NO ₃ ⁻ SO ₄ ²⁻	33.4		
	Henniez	lm	SO ₄ - Ca	2682 111	mg/L	
	Teimez	1111	Mg	19	mg/ L	
			Na	9		
	Passugger	mm	Ca	286-436		
	Valser		Mg	24–54		
taly	Aqua di Nepi	lm	Na Ca	11–46 72–124	ma/I	(Bong and others 2009,
tary	Aqua Gi INEPI Aqua Fabia	1111	Mg	5-26	mg/L	Azoulay and others 2001,
	riqua rabia		Na	15–32		Morr and others 2006)
	Aqua Panna	lm, nc	Ca	912-15000		,
			Cl	241		
			HCO ₃ -	1975		
			K Mg	22.1 302–5000		
			Na	355–3000		
			NO_3^-	69.7		
			SO_4^{2-}	229		
	Boario Claudia	lm	Ca Ma	60–124		
	Crodo Lisiel		Mg Na	2–41 6–56		
	Crodo Valle d'Oro	mm	Ca	408-510		
	Ferrarelle	•	Mg	23–51		
			Na	2-50		
	Fiuggi	lm	Ca	15–18		
	Levissima		Mg Na	1-5 1-6		
	Maxim's	s	Na Ca	1–6 20.2		
		Ŭ	Mg	1.6		
			Na	3.9		

Table 5-Continued

Country	Brand	Type of water	Parameter	Range	Unit	References
	Pracastello	mm	Ca	164		
			Mg	46		
			Na	28		
	S. Pellegrino	mm, c	Ca	4701-208000	$\mu \mathrm{g/L}$	
			Cl	1810		
			HCO ₃ ⁻	3495		
			K	74.5		
			Mg	2361-55900		
			Na	1596-43600		
			NO ₃	50.6	-	
	San Bendetto	lm	Ca	43	mg/L	
			Mg	25		
	G D 1	1	Na	8	/T	
	San Bernardo	lm, c	Ca	1334–12000	$\mu \mathrm{g/L}$	
			Cl	91.3		
			HCO ₃ -	4815		
			K	26.6		
			Mg	1000–1313		
			Na No -	325-1000		
			NO ₃ -	139		
	C D !! :		SO ₄ ²⁻	49.6	/T	
	San Pellegrino	m	Ca	204–414	mg/L	
	Sanfaustino		Mg	17–57		
			Na	17–47		
	Sangemini	mm	Ca	322		
			Mg	19		
	0.17		Na	21	/T	
	Solé	nc	Ca	10.8	$\mu \mathrm{g/L}$	
			Cl	298		
			HCO ₃ ⁻	1740		
			K	2359		
			Mg	8.47		
			Na No -	77.9		
			NO ₃ -	16.7		
	***	1	SO ₄ ²⁻	5.85	/T	
	Vera	lm	Ca	34	mg/L	
			Mg	12 2		
sia			Na	2		
orea	Bongpyong	nc	Ca	386	μ g/L	(Bong and others 2009)
ica	Dongpyong	iic	Cl	174	μg/ L	(Bolig and others 2007)
			HCO ₃ -	1011		
			K	15.2		
			Mg	124		
			Na Na			
			Na	291		
			Na NO ₃ ⁻	291 120		
	Choinng	C	Na NO ₃ ⁻ SO ₄ ²⁻	291 120 38.5		
	Chojung	c	Na NO ₃ ⁻ SO ₄ ²⁻ Ca	291 120 38.5 597		
	Chojung	с	Na NO ₃ ⁻ SO ₄ ²⁻ Ca Cl	291 120 38.5 597 480		
	Chojung	c	Na NO ₃ ⁻ SO ₄ ²⁻ Ca Cl HCO ₃ ⁻	291 120 38.5 597 480 1488		
	Chojung	c	Na NO ₃ - SO ₄ ² - Ca Cl HCO ₃ - K	291 120 38.5 597 480 1488 35.9		
	Chojung	с	Na NO ₃ ⁻ SO ₄ ² ⁻ Ca Cl HCO ₃ ⁻ K Mg	291 120 38.5 597 480 1488 35.9 220		
	Chojung	с	Na NO ₃ - SO ₄ ² - Ca Cl HCO ₃ - K Mg Na	291 120 38.5 597 480 1488 35.9 220 938		
	Chojung	c	Na NO ₃ - SO ₄ ² - Ca Cl HCO ₃ - K Mg Na NO ₃ -	291 120 38.5 597 480 1488 35.9 220 938 225		
			Na NO ₃ - SO ₄ ² - Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ ² -	291 120 38.5 597 480 1488 35.9 220 938 225 127	μφ/Ι.	
	Chojung Dongwon	c	Na NO ₃ - SO ₄ ² - Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ ² - Ca	291 120 38.5 597 480 1488 35.9 220 938 225 127 783	μg/L	
			Na NO ₃ - SO ₄ ²⁻ Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ ²⁻ Ca Cl	291 120 38.5 597 480 1488 35.9 220 938 225 127 783 150	μg/L	
			Na NO ₃ - SO ₄ ²⁻ Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ ²⁻ Ca Cl HCO ₃ -	291 120 38.5 597 480 1488 35.9 220 938 225 127 783 150 1318	μg/L	
			Na NO ₃ ⁻ SO ₄ ²⁻ Ca Cl HCO ₃ ⁻ K Mg Na NO ₃ ⁻ SO ₄ ²⁻ Ca Cl HCO ₃ ⁻ K	291 120 38.5 597 480 1488 35.9 220 938 225 127 783 150 1318 30.1	μg/L	
			Na NO ₃ - SO ₄ ² - Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ ² - Ca Cl HCO ₃ - K Mg	291 120 38.5 597 480 1488 35.9 220 938 225 127 783 150 1318 30.1 156	μg/L	
			Na NO ₃ - SO ₄ ² - Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ ² - Ca Cl HCO ₃ - K Mg	291 120 38.5 597 480 1488 35.9 220 938 225 127 783 150 1318 30.1 156 274	μg/L	
			Na NO ₃ - SO ₄ ² - Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ ² - Ca Cl HCO ₃ - K Mg	291 120 38.5 597 480 1488 35.9 220 938 225 127 783 150 1318 30.1 156 274 47.2	μg/L	
	Dongwon	nc	Na NO ₃ - SO ₄ ²⁻ Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ ²⁻ Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ ²⁻ SO ₄ ²⁻ SO ₄ - SO ₄	291 120 38.5 597 480 1488 35.9 220 938 225 127 783 150 1318 30.1 156 274 47.2 358		
			Na NO ₃ - SO ₄ ² - Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ ² - Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ ² - Ca SO ₄ ² - Cl	291 120 38.5 597 480 1488 35.9 220 938 225 127 783 150 1318 30.1 156 274 47.2 358 194–262	μg/L μg/L	
	Dongwon	nc	Na $NO_3^ SO_4^{2-}$ Ca Cl $HCO_3^ K$ Mg Na $NO_3^ SO_4^{2-}$ Ca Cl $HCO_3^ K$ Mg Na $NO_3^ SO_4^{2-}$ Ca SO_4^{2-}	291 120 38.5 597 480 1488 35.9 220 938 225 127 783 150 1318 30.1 156 274 47.2 358 194–262 170–184		
	Dongwon	nc	Na $NO_3^ SO_4^{2-}$ Ca Cl $HCO_3^ K$ Mg Na $NO_3^ SO_4^{2-}$ Ca Cl $HCO_3^ K$ Mg Na $NO_3^ Cl$ Cl Cl Cl Cl Cl Cl Cl	291 120 38.5 597 480 1488 35.9 220 938 225 127 783 150 1318 30.1 156 274 47.2 358 194–262 170–184 983–1096		
	Dongwon	nc	Na NO ₃ - SO ₄ 2- Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ 2- Ca Cl HCO ₃ - K Mg Na NO ₃ - Ca Cl HCO ₃ - Ca Cl HCO ₃ - K Mg Na NO ₃ - Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ 2- Ca Cl HCO ₃ - K	291 120 38.5 597 480 1488 35.9 220 938 225 127 783 150 1318 30.1 156 274 47.2 358 194–262 170–184 983–1096 16.1–18.3		
	Dongwon	nc	Na NO ₃ - SO ₄ 2- Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ 2- Ca Cl HCO ₃ - K Mg Na NO ₃ - Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ 2- Ca Cl HCO ₃ - K Mg Na	291 120 38.5 597 480 1488 35.9 220 938 225 127 783 150 1318 30.1 156 274 47.2 358 194–262 170–184 983–1096 16.1–18.3 29.4–39.3		
	Dongwon	nc	Na NO ₃ - SO ₄ 2- Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ 2- Ca Cl HCO ₃ - K Mg Na NO ₃ - Ca Cl HCO ₃ - Ca Cl HCO ₃ - K Mg Na NO ₃ - Ca Cl HCO ₃ - K Mg Na NO ₃ - SO ₄ 2- Ca Cl HCO ₃ - K	291 120 38.5 597 480 1488 35.9 220 938 225 127 783 150 1318 30.1 156 274 47.2 358 194–262 170–184 983–1096 16.1–18.3		

Table 5-Continued

Country	Brand	Type of water	Parameter	Range	Unit	References
	Icis	nc	Ca	6.7–586	μg/L	
	Keumgangsoob		Cl	76-393		
	Odaesan		HCO_3^-	41-2705		
	Power O2		K	7-2359		
	Samdasoo		Mg	7.6-553		
	Sammool		Na	64.5-929		
	Seoksu		NO_3^-	16.7-131		
	Siana		SO_4^{2-}	5.8-304		
	Soo					
	Soonsoo					
	T^ynant					
	Tynant	С	Ca	601	$\mu \mathrm{g/L}$	
	Tau		Cl	390		
			HCO ₃ -	2033		
			K	21.7		
			Mg	551		
			Na	948		
			SO_4^{2-}	75.2		
	Waterline	nc	Ca	573-617	μ g/L	
	Yaksan		Cl	105-115		
			HCO ₃ -	1570-1661		
			K	23.2-24.3		
			Mg	200–211		
			Na	187-228		
			NO_3^-	66.6-76.2		
			SO_4^{2-}	108-129		
orth Amer	rica					
ji	Fiji	S	Ca	17	mg/L	(Morr and others 2006)
	_		Mg	13		
ınada	Aberfoyle	s. plastic	Al	4	μ g/L	(Azoulay and others 2001
	,	1	Ca	0.05	mg/L	Bong and others 2009.
			Cd	0.2	$\mu \mathrm{g/L}$	Ikem and others 2002)
			Cl	49.77	mg/L	,
			Co	1	μg/L	
			Cr	< 0.2	1.0	
			Cu	1		
			Fe	0.001		
			Hg	14		
			K	1.82	mg/L	
			Mg	24.5	mg/ L	
			Mn	< 0.1	$\mu \mathrm{g/L}$	
			Mo	< 0.7	µg/L	
			Na	23	mg/L	
			SO ₄ ²⁻	79.69	mg/ L	
			Zn	27	$\mu \mathrm{g/L}$	
	Canada Geese	m	Ca	282	mg/L	
	Canada Geese	111		10	mg/ L	
			Mg Na	36		
	Canadian Spring	S	Ca	11–20		
	Clairval	3	Mg	3–7		
	Ciaii vai		Na Na	2–13		
	Dannon	s. plastic	Ag	0.3 ± 0.6	μ g/L	
	Daimon	s. plastic	Al	2.7 ± 2.5	μg/ L	
			Ca	21.95 ± 22.45	mg/L	
			Cl	48.76 ± 35.27	mg/ L	
			Co	1.7 ± 1.5	μ g/L	
			Cr	0.3 ± 0.5	μg/ L	
			Cu	0.7 ± 0.6		
			Fe	0.001 ± 0.001		
			Hg	12 ± 16.5		
			пg К	1.09 ± 0.91	mg/L	
			Mg	7.10 ± 2.84	mg/L	
			Na Na	23.52 ± 18.23		
			Pb		u o /T	
			Pb SO ₄ ²⁻	0.3 ± 0.5	μg/L	
			SO ₄ ² U	20.40 ± 7.24 0.7 ± 1.1	mg/L μg/L	
				$U / \pm I I$	1107/1	
					Mg/ L	
	Montoloir	***	Zn	8 ± 8.7		
	Montclair Montellier	m			mg/L	

Table 5-Continued

Country	Brand	Type of water	Parameter	Range	Unit	References
	Naya	s	Са	38		
			Mg	20		
	7971 ° .1		Na	6	/T	
	Whistler	nc	Ca	311	$\mu \mathrm{g/L}$	
			Cl HCO ₃ -	166 556		
			K	14.7		
			Mg	53.8		
			Na	109		
			NO_3^-	13.6		
			SO_4^{2-}	73		
JSA	A Sante	m	Ca	4	mg/L	(Bong and others 2009,
			Mg	1	C	Azoulay and others 2001.
			Na	160		Morr and others 2006
	Adobe Springs	S	Ca	1-3		Ikem and others 2002)
	Alhambra		Mg	1–96		
	A	1	Na	4–5	/1	
	Aquafina	p. plastic	Ag	1.1 ± 1.9	$\mu \mathrm{g/L}$	
			Al	1.3 ± 2.9		
			As Ca	11.9 ± 9.1 0.06 ± 0.04	mg/L	
			Cd	1 ± 1.9	μg/L μg/L	
			Cl	3.9 ± 1.116	mg/L	
			Co	2 ± 1.5	μg/L	
			Cr	< 0.2	1.0	
			Cu	0.6 ± 0.8		
			Fe	0.1 ± 0.4		
			Hg	3 ± 5.1		
			K	0.05 ± 0.05	mg/L	
			Mg	0.02 ± 0.03		
			Mo	2.3 ± 4.7	$\mu g/L$	
			Na	4.28 ± 8.62	mg/L	
			Pb SO ₄ ²⁻	0.3 ± 0.7 0.24 ± 0.21	μg/L	
			Th	2.3 ± 2.9	mg/L μg/L	
			U	0.7 ± 0.8	μg/L	
			Zn	0.9 ± 0.7		
	Arrowhead	S	Ca	20–36	mg/L	(Bong and others 2009,
	Black Mountain		Mg	1-5	8	Azoulay and others 2001
	Caddo Valley		Na	2–12		Morr and others 2006, Ikem and others 2002)
	Calistoga	m	Ca	7	mg/L	
			Mg	1		
		1	Na	150	/T	
	Canterbury	s. plastic	Ca	0.05	mg/L	
			Cd Cl	< 0.2 5.7	μg/L mg/L	
			Co	< 0.4	μg/L	
			Cr	< 0.2	μg/ L	
			Cu	1		
			Fe	0.001		
			Hg	0.01		
			K	1.79	mg/L	
			Mg	16		
			Mn	1	$\mu \mathrm{g/L}$	
			Mo	1		
			Na SO ₄ ²⁻	1.61	mg/L	
	Carolina mountain		Ca	5.84 5–6	mg/L	
	Cobb mountain	S	Mg	2	mg/L	
	Cobb mountain		Na	4-5		
	Crystal geyser	s. plastic	Ag	1–57	$\mu \mathrm{g/L}$	
	Crystal springs	1	Al	0.2-3	, 5	
			As	12		
			Ca	4-26.7	mg/L	
			Cd	2–3	$\mu \mathrm{g/L}$	
			Cl	6.8-49.77	mg/L	
				0.6.		
			Со	0.8–1	$\mu \mathrm{g/L}$	
			Cr	< 0.2	$\mu \mathrm{g/L}$	
					$\mu \mathrm{g/L}$	

Table 5-Continued

Country	Brand	Type of water	Parameter	Range	Unit	References
			K	0.5-1.13	mg/L	
			Mg	3.75-24.5	C	
			Mn	0.1-5.5	$\mu \mathrm{g/L}$	
			Mo	0.7-8	, 0	
			Na	1.2-160	mg/L	
			Pb	0.5	μg/L	
			SO ₄ ²⁻	2.58-79.69	mg/L	
			Zn	27	μg/L	
	Dasani	p. plastic	Ag	0.2 ± 0.4	μg/L μg/L	(Bong and others 2009,
	Dasain	p. plastic	Al	2.6 ± 4.2	μg/ L	Azoulay and others 2001,
			As	6.5 ± 6.3		Morr and others 2006;
					/T	
			Ca	0.08-10	mg/L	Ikem and others 2002)
			Cd	0.7 ± 1.6	$\mu g/L$	
			Cl	8.38 ± 0.68	mg/L	
			Co	1.5 ± 1.4	$\mu \mathrm{g/L}$	
			Cr	0.4 ± 0.9		
			Cu	0.5 ± 0.6		
			Fe	0.4 ± 0.6		
			Hg	20 ± 29.8		
			K	12.89	mg/L	
			Mg	3.10 ± 0.77		
			Mn	2 ± 7	$\mu \mathrm{g/L}$	
			Mo	2.7 ± 3.5		
			Na	12.89 ± 31.21	mg/L	
			Pb	0.3 ± 0.5	$\mu \mathrm{g/L}$	
			SO_4^{2-}	14.29 ± 0.99	mg/L	
			Th	3.0 ± 6.5	$\mu \mathrm{g}/\mathrm{L}$	
			U	2.5 ± 6.5		
			Zn	3.8 ± 10.7		
	Deep Rock	S	Ca	0.5 - 26.5	mg/L	
	Deer Park		Mg	1-2.6		
			Na	1-60		
	Fountainhead	s. plastic	Ag	67.8 ± 161.3	$\mu \mathrm{g/L}$	
		•	Al	4.7 ± 5.6	, 0	
			As	9.7 ± 11.4		
			Ca	3.1 ± 4.74	mg/L	
			Cd	1.3 ± 2.2	$\mu \mathrm{g}/\mathrm{L}$	
			Cl	4.7 ± 0.92	mg/L	
			Co	1 ± 0.8	$\mu \mathrm{g}/\mathrm{L}$	
			Cr	< 0.2	, 0	
			Cu	0.5 ± 0.8		
			Fe	0.001 ± 0.0006		
			Hg	24.7 ± 28		
			K	1.3 ± 0.19	mg/L	
			Mg	0.34 ± 0.04	mg/ L	
			Mo	2.8 ± 3.1	ua/I	
					$\mu g/L$	
			Na Dl	5.33 ± 0.45	mg/L	
			Pb	0.2 ± 0.4	$\mu g/L$	
			SO ₄ ²⁻	14.56 ± 1.53	mg/L	
			Th	2.2 ± 3.0	$\mu \mathrm{g/L}$	
			U	2.3 ± 2.7		
	C N N		Zn	2.2 ± 1.0	/T	/D 1 1 2000
	Georgia Mountain Water	S	Ca	2	mg/L	(Bong and others 2009,
	Goldemb	s. plastic	Ag	0.12	$\mu \mathrm{g/L}$	Azoulay and others 2001
			As	4	/T	Morr and others 2006,
			Ca	0.05	mg/L	Ikem and others 2002)
			Cd	5	$\mu \mathrm{g/L}$	
			Cl	6.13	mg/L	
			Cr	< 0.2	$\mu \mathrm{g/L}$	
			Cu	< 0.2		
			Fe	0.001		
			Hg	75		
			K	0.258	mg/L	
			Mg	3.2		
			Mn	1	$\mu \mathrm{g/L}$	
			Mo	2		
			Na	2.06	mg/L	
			SO_4^{2-}	12.94		
			Th	2	$\mu \mathrm{g/L}$	
			U	1		
			Zn	3		

Table 5-Continued

Country	Brand	Type of water	Parameter	Range	Unit	References
	Great Bear	s	Са	1–1.3	mg/L	
			Mg	1		
	Harraiian	م ساممها م	Na A ~	1.7–3	/I	
	Hawaiian	s. plastic	Ag Ca	2 0.04	μg/L mg/L	
			Cd	< 0.2	μg/L	
			Cl	7.17	mg/L	
			Cr	< 0.2	$\mu \mathrm{g}/\mathrm{L}$	
			Cu	1		
			Fe	0.009		
			K	2.35	mg/L	
			Mg	3.47	/T	
			Mn Mo	1 2	$\mu \mathrm{g/L}$	
			Na	5.98	mg/L	
			SO ₄ ²⁻	5.63	mg/ L	
			Th	5	$\mu \mathrm{g/L}$	
			U	1	, 0	
			Zn	15		
	Hawaiian Springs	S	Ca	6-37	mg/L	
	La Croix		Mg	3–22		
			Na	4–6		
	Lithia Springs	m	Ca	120	mg/L	
			Mg	7		
	Melwood	1	Na	680	/I	
	Melwood	s. plastic	Ag Al	3 ± 28 6.4 ± 9.2	$\mu \mathrm{g/L}$	
			As	2 ± 2.8		
			Ca	1.53 ± 2.1	mg/L	
			Cl	7.17	g, 2	
			Co	1 ± 1.4	μ g/L	
			Cr	< 0.2	. 0	
			Cu	1.5 ± 0.7		
			Fe	0.001		
			K	10.2 ± 8.77	mg/L	
			Mg	1.06 ± 0.92	/T	
			Mn	0.5 ± 0.7	$\mu \mathrm{g/L}$	
			Mo Na	3 ± 4.2 5.98	mg/L	
			SO ₄ ²⁻	5.63	mg/ L	
			Th	5	$\mu \mathrm{g/L}$	
			U	1	P-8' -	
			Zn	15		
	Mendocino	m	Ca	310	mg/L	(Bong and others 2009,
			Mg	130		Azoulay and others 2001,
			Na	240		Morr and others 2006,
						Ikem and others 2002)
	Mount Olympus	S	Ca	8–68	mg/L	
	Mountain Valley		Mg	2–8 3		
	Mountainvalley	s. plastic	Na Ca	0.05	mg/L	
	Oasis	s. plastic	Ca Cd	< 0.2	mg/L μg/L	
	Casis		Cl	10–23	mg/L	
			Cr	0.2	μg/L	
			Cu	0.5-2	1.0	
			Fe	0.003		
			K	0.58 - 1.22	mg/L	
			Mg	4.4-8		
			Mn	1	μ g/L	
			Mo	2–10		
			Na SO ₄ ²⁻	3–128	mg/L	
			SO ₄ 2- Th	8–16 2–11	uc/I	
			U U	18	$\mu \mathrm{g/L}$	
			Zn	6–11		
	Ozarka	s	Ca	18	mg/L	
		,	Mg	1	6/ 12	
			Na	5		
	Pleasantspring	s. plastic	Ag	1	$\mu \mathrm{g/L}$	
	1 0		Ca	0.05	mg/L	
			Cd	1	$\mu \mathrm{g/L}$	
			Cl	16	mg/L	

Table 5-Continued

Country	Brand	Type of water	Parameter	Range	Unit	References
			Cr	< 0.2	μg/L	
			Cu	1		
			Fe	0.001		
			Hg K	1 52.8	mg/L	
			Mg	1.27	mg/ L	
			Mn	5	$\mu \mathrm{g/L}$	
			Mo	1	. 0	
			Na	1.82	mg/L	
			SO ₄ ²⁻	1.59		
	D-11 Ci		Th	3	μg/L	/B 1 1 2000
	Poland Spring	S	Ca Mg	4.1 0.2–1	mg/L	(Bong and others 2009, Azoulay and others 2001
			Na Na	1.5–3		Morr and others 2006,
			1 14	1.5 0		Ikem and others 2002)
	Prestige	s. plastic	Al	1 ± 1.4	$\mu \mathrm{g/L}$,
		•	Ca	12.82 ± 18.07	mg/L	
			Cd	2.5 ± 3.5	μ g/L	
			Co	0.5 ± 0.7		
			Cu	< 0.2		
			Fe	0.002 ± 0.001	/T	
			K	0.49 ± 0.08	mg/L	
			Mg Mo	8.166 ± 1.15 12.4 ± 15.1	μ g/L	
			Na Na	6.17 ± 0.28	μg/L mg/L	
			SO ₄ ²⁻	9.42 ± 0.33	mg/ L	
			U	1 ± 1.4	$\mu \mathrm{g/L}$	
			Zn	3.5 ± 0.7	, 0	
	Pure Spring Water	S	Ca	49	mg/L	
			Mg	4		
	Sams	p. plastic	Ag	1	μ g/L	
			As	0.005		
			Ca	0.04	mg/L	
			Cd Cl	5 5.55	μg/L	
			Cr	< 0.2	mg/L μg/L	
			Cu	< 0.2	μg/ L	
			Fe	0.002		
			Hg	79		
			K	0.13	mg/L	
			Mg	0.09	_	
			Mn	0.002	μ g/L	
			Мо	1		
			Na	2.64	mg/L	
			Pb SO ₄ ²⁻	3	μg/L	
			5O₄ Th	2.64 4	mg/L μg/L	
			U	2	μg/ L	
			Zn	< 0.1		
	Silverspring	s. plastic	Ag	0.5-8.3	$\mu \mathrm{g/L}$	
	Southernhome	1	Al	0.3	, 0	
			Ca	0.04	mg/L	
			Cd	2.8-3	μ g/L	
			Cl	14.6-26.05	mg/L	
			Со	0.5-0.7	$\mu \mathrm{g/L}$	
			Fe	0.002-1.3		
			Hg K	6–12.7 0.53–0.66		
			Mg	6.3-8.72	mg/L	
			Mo	0.5-20.6	$\mu \mathrm{g/L}$	
			Na	2.17-6.44	mg/L	
			SO_4^{2-}	9.42-10.24	0	
			Th	0.7 - 2.3	μ g/L	
			U	1.3-5.3		
			Zn	3 - 4		
	Sparkletts	S	Ca	5	mg/L	
			Mg	5 15		
	Sumin ation a	1	Na A~	15	us /T	
	Springtime Sweetwater	s. plastic	Ag Al	0.5 0.3	μ g/L	
	Sweetwater		As As	0.3		
			Ca	0.05 - 5.7	mg/L	

Table 5-Continued

Country	Brand	Type of water	Parameter	Range	Unit	References
			Со	1-2.5	μg/L	
			Cu	0.5-0.7		
			Fe	0.5-0.7		
			Hg	7.7	/T	
			K Mg	0.57-3 1.6-2.2	mg/L	
			Mo	1.0-2.2	$\mu \mathrm{g/L}$	
			Na	8–143	mg/L	
			SO ₄ ²⁻	1.7–8.9	g, 2	
			Th	7	$\mu \mathrm{g/L}$	
			U	2.5-4.7		
			Zn	2-3		
	Talawanda Spring	S	Ca	2–76	mg/L	
	Talking Rain		Mg	2–17		
	Utopia Viales Series as		Na Ca	3–8		
	Vichy Springs	m	Ca Ma	157 48	mg/L	
			Mg Na	1095		
	Zephyrhills	s. plastic	Ag	11.4 ± 25.5	$\mu \mathrm{g/L}$	(Bong and others 2009,
	Zephymms	s. Plastic	Al	0.6 ± 0.9	μg/ L	Azoulay and others 2001;
			As	0.8 ± 1.8		Morr and others 2006;
			Ca	10.52 - 58	mg/L	Ikem and others 2002)
			Cd	2 ± 2.3	$\mu \mathrm{g}/\mathrm{L}$,
			Cl	15.13 ± 1.24	mg/L	
			Co	0.8 ± 1.0	$\mu \mathrm{g/L}$	
			Cr	0.2 ± 0.4		
			Cu	0.6 ± 0.9		
			Fe	0.6 ± 0.5		
			Hg	16.6 ± 22	/T	
			K Ma	0.37 ± 0.08 $0.9 - 3$	mg/L	
			Mg Mo	5.8 ± 3.8		
			Na	4 - 6.69	mg/L	
			Pb	0.4 ± 0.5	μg/L	
			SO ₄ ²⁻	14.32 ± 0.54	mg/L	
			Th	6.6 ± 12.1	$\mu \mathrm{g}/\mathrm{L}$	
			U	5.4 ± 5.9		
۸.6.			Zn	5.4 ± 2.6		
Africa Egypt	Baraka	1.5 L	Al	2.71	mg/L	(Saleh and others 2001)
			Ba	59.7		
			Ca	20.7		
			Со	0.02		
			Cr Cu	8.92 4.63		
			Fe	79		
			Hg	0.01		
			K	21.2		
			Mg	23.3		
			Mo	1.86		
			Na	67.2		
			Ni	0.53		
			Pb	0.02		
			Sb	0.28		
			Si	17.2		
			Ti	60.8		
			V	2.51		
	Delta	Plastic 1.5 L	Zn Al	4.85 3.51	mg/L	
	1)Cita	1 IdSUC 1.3 L	Ba	11.5	mg/ L	
			Be	0.02		
			Ca	27.2		
			Cd	0.02		
			Co	0.04		
			Cr	10.4		
			Cu	2.65		
			Fe	40.1		
			Hg	0.01		
			K	4.06		
			Mg	11.5		
			Mn	0.33		

Table 5-Continued

Country	Brand	Type of water	Parameter	Range	Unit	References
			Мо	0.88	<u></u>	
			Na N	34.5		
			Ni P	0.88		
			P Pb	20.7 0.06		
			Sb	0.1		
			Si	17.1		
			Ti	80.4		
			V	7		
	Mineral	1.5 L	Zn Ag	9.26 0.12	mg/L	(Saleh and others 2001)
	ivilliciai	1.5 L	Al	13.3	mg/ L	(Saleir and Others 2001)
			Ba	40.1		
			Be	0.02		
			Ca	44.8		
			Cd Co	0.01 0.04		
			Cr	14.9		
			Cu	10.5		
			Fe	121		
			Hg	0.03		
			K Ma	4.88 1.54		
			Mg Mn	0.05		
			Mo	0.35		
			Na	169		
			Ni	2.24		
			Pb	0.08		
			Sb Si	0.19 11.5		
			Ti	136		
			V	4.59		
	Safi	1.5 L	Al	11.9	mg/L	
			Ba	262		
			Ca Cr	7.88		
			Cr Cu	5.45 2.92		
			Fe	60.9		
			Hg	0.01		
			K	21.2		
			Mg	8.15		
			Mn Mo	1.41 0.29		
			Na	32.9		
			Ni	0.55		
			Pb	0.04		
			Sb	0.18		
			Si Ti	12.3		
			Ti V	23.4 1.51		
			Zn	58.8		
	Siwa	1.5 L	Al	11	mg/L	
			Ba	222		
			Be	0.01 6.02		
			Ca Cd	0.02		
			Co	0.01		
			Cr	5.4		
			Cu	4.14		
			Fe	99.3		
			Hg K	0.03 18.5		
			K Mg	6.85		
			Mo	0.36		
			Na	43.8		
			Ni	1.24		
			P	3.92		
			Pb Sb	0.2 0.3		
			Sb Si Ti	11.6		
				17.7		

Table 5-Continued

Country	Brand	Type of water	Parameter	Range	Unit	References
			V	1.49		
			Zn	64.1		
	Spa Reine	lm	Mg	1	mg/L	
	-		Na	3	_	

M = mineral; lm = low mineral content; mm = medium mineral content; hm = high mineral content; s = source; p = purified; c = carbonated; nc = noncarbonated; plastic = bottle made from synthetic material; glass = glass bottle.

Table 6-Levels of organic contaminants in bottled waters (literature information).

Parameter	Range	Type of water	Reference
Pesticides			
α-HCH	0.045-0.098 mg/L	Bottled 1.5-19 L	(Diaz and others 2009)
β -HCH	0.048-0.152 mg/L		,
β-HCH	0.019-0.033 mg/L		
δ-ΗСΗ	0.012-0.046 mg/L		
Aldrin	0.012-0.027 mg/L		
DDD	0.003-0.009 mg/L		
DDE			
	0.029-0.060 mg/L		
DDT	0.003-0.009 mg/L		
Dieldrin	nd		
Endosulfan I	nd-0.005 mg/L		
Endosulfan II	nd		
Endosulfan sulfate	nd-0.033 mg/L		
Endrin	nd-0.008 mg/L		
Endrin aldehyde	0.001-0.007 mg/L		
Volatile organic compounds			
1,2,4-Trimethylobenzene	0.11-0.13 mg/L	Bottled	(Al-Mudhaf and others 2009, Ahmad and Bajahlan 200
1,2-Dichloropropanne	0.12-0.4 mg/L		Ikem 2010)
1,3,5-Trimethylobenzene	0.41 mg/L		·
1,3-Dichlorobenzene	0.1 mg/L		
Bromodichloromethane	0.1-0.58 mg/L		
Bromoform	0.11–37.55 mg/L		
Chloroform	0.1–1.85 mg/L		
Dibromochloromethane	0.1–1.76 mg/L		
Dibromomethane			
	0.1–0.74 mg/L		
Ethylbenzene	0.1–0.17 mg/L		
iso-Propylbenzene	0.11 mg/L		
Xylene	0.2–0.77 mg/L		
Naphthalene	0.1–0.75 mg/L		
Styrene	0.5-46.4 mg/L		
Toluene	0.1–1.18 mg/L		
Trichloroethene	0.13 mg/L		
Chloral-hydrate	$0.4-0.9 \ \mu g/L$		
Trichloropropanone	$0.4-0.7 \ \mu g/L$		
Dichloroacetonitrile	$0.12-0.22 \ \mu g/L$		
Haloacetic Acids			
Formic acid	$33.2-58.1 \mu g/L$	Bottled (purified, mineral, natural)	(Liu and Mou 2003)
Dichloroacetic acid	na-0,6 μg/L	,	,
msp;Toluene	0.1–1.18 mg/L		
Ethanedioic acid	$23-44 \mu g/L$		
Antioxidant	20 11 Mg/ 2		
Butylated hydroxytoluene	nd–38 μg/L	Bottled 0.5–2 L	(Tombesi and Freije 2002)
4-Nonylphenol	108–298 ng/L	Bottled (mineral, pure)	(Li and others 2010)
Bisphenol A	17,6–324 ng/L		
Triclosan	0.6–9.7 ng/L		
Perfluorochemicals			
PFBuS	< 0.27 ng/L	Bottled	(Ericson and others 2008)
PFDA	0.63-0.82 ng/L		
PFDoDA	< 0.34 ng/L		
PFDS	< 0.1 ng/L		
PFHpA	0.4-0.61 ng/L		
PFHxA	0.87-0.102 ng/L		
PFHxS	< 0.18 ng/L		
PFNA	0.13-0.42 ng/L		
PFOA	0.16-0.67 ng/L		
PFOS	< 0.24 ng/L		
PFOSA	< 0.24 ng/L 0.19 ng/L		
PFTDA			
	< 0.90 ng/L		
PFUnDA	< 0.43 ng/L		
THPFOS	< 0.1 ng/L		
Carbonyl compounds			
Formaldehyde	0.8–96.1 μg/L	0.5–1.5 L, Bottled (c, nc)	(Nawrocki and others 2002)
Acetaldehyde	0.6 –317.8 μ g/L		
Acetone	$5.1-125.6 \mu g/L$		

 $c = carbonated; \, nc = noncarbonated. \,$

References

- Ahmad M, Bajahlan, AS. 2009. Quality comparison of tap waters vs. bottled water in the industrial city of Yanbu (Saudi Arabia). Environ Monit Assess 159:1-14.
- Al-Mudhaf HF, Alsharif FA, Aby-Shady A-S. 2009. A survey of organic contaminants in household and bottled drinking waters in Kuwait. Sci Total Environ 216:181-92.
- Al-Saleh UI, Al-Doush I. 1998. Survey of trace elements in household and bottled drinking water samples collected in Riyadh, Saudi Arabia. Sci Total Environ 216:181-92.
- Azoulay A, Garzon P, Eisenberg MJ. 2001. Comparison of the mineral content of tap water and bottled waters. J Gen Intern Med 16:168-75
- Baba A, Ereeş FS, Hıçsönmez Ü, Çam S, Özdılek HG. 2007. An assessment of the quality of various bottled mineral water marketed in Turkey. Environ Monit Assess 139:277-85
- Benefits of Recycling. Available from: http://www.benefits-of-recycling.com/index.html Accessed 2011 Jan.
- Bong YS, Ryu J-S, Lee K-S. 2009. Characterizing the origins of bottled water on the South Korean market using chemical and isotopic compositions. Anal Chim Acta 631:189-95.
- Burlingame B. 2003. Reflections on water. J Food Compos Anal 16:533-4
- [PL-BN] Butelkowane wody stołowe: BN-90/9567-08, z dnia 28 lutego 1990 r.
- Chiba M, Shinohara A, Sekine M, Hiraishi S. 2006. Drinking water quality from the aspect of element concentrations. J Radioanal Nucl Chem 269:519-26
- Coelho TM Castro R, Gobbo JA, Jr. 2011. PET containers in Brazil: opportunities and challenges of a logistics model for post-consumer waste recycling. Res Conser Rec 55:291-9.
- Costa ACM, Anjos MJ, Mortira S, Lopes RT, de Jesus EFO. 2003. Analysis of mineral water from Brazil using total reflection X-ray fluorescence by synchrotron radiation. Spectrochim Acta B 58:2199-204.
- de Beaufort ID. 2007. The camel syndrome. J Public Heath 15:407-12.
- Diaz G, Ortiz R, Schettino B, Vega S, Gutierrez R. 2009. Organochlorine pesticides residues in bottled drinking water from Mexico City. Bill Environ Contam Toxicol 82:701-4.
- EEC. 1998. Council Directive 98/83/EC of 3rd November 1998 on the quality of water intended for human consumption. Official J L 330:32-54.
- EEC. 2003. Council Directive 2003/40/EC of 16 May 2003 establishing the list, concentration limits and labelling requirements for the constituents of natural mineral waters. Official J L 126:34-9.
- EPA Environmental Protection Agency. 2009. Current drinking water standards. Available from: http://water.epa.gov/drink/contaminants/index.cfm. Accessed Feb 2011.
- Ericson I, Nadal M, van Bavel B, Lindström G, Domingo JL. 2008. Levels of perfluorochemicals in water samples from Catalonia, Spain: is drinking water a significant contribution to human exposure? Environ Sci Pollut Res 15:614-9.
- FDA (Food and Drug Administration). tration). 2010. Requirem 165.110 Bottled water. Requirements cific standardized beverages, Sec. Available http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?FR=165.110&st= drinking%20water, Accessed Feb 2011.
- Greulich K, Alder L. 2008. Fast multiresidue screening of 300 pesticides in water for human consumption by LC-MS/MS. Anal Bioanal Chem 391:183-97
- Güler C. 2007. Evaluation of maximum contaminant levels in Turkish bottled drinking water utilizing parameters reported on manufacturer's labeling and government-issued productions licenses. J Food Compos Anal 20:262-72.
- Hansen HR, Pergantis SA. 2006. Detection of antimony species in citrus juices and drinking water stored in PET containers. J Anal At Spectrom 21:731-3.
- IBWA (International Bottled Water Association). 2009. Model bottled water regulation. Available from: http://www.bottledwater.org/files/IBWA%20Code%20of%20Practice%20Updated% 202009%20Final_3.pdf. Accessed Feb 2011.
- Ikem A, Odueyungbo S, Egiebor NO, Nyavor K. 2002. Chemical quality of bottled waters from three cities in eastern Alabama. Sci Total Environ 285:165-75.
- Keresztes S, Tatar E, Miaucz VG, Virag I, Majdik C, Zaray G. 2009. Leaching of antimony from polyethylene terephthalate (PET) bottles into mineral water. Sci Total Environ 407:4731-5.

- Krachler M, Shotyk W. 2009. Trace and ultratrace metals in bottled waters: survey of sources worldwide and comparison with refillable metal bottles. Sci Total Environ 407:1089-
- Leivadara SV, Nikolaou AD, Lekkas TD. 2008. Determination of organic compounds in bottled waters. Food Chem 108:277-86
- Li X, Ying G-G, Su H-C, Yang X-B, Wang L. 2010. Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environ Intern 36:557-62
- Liu Y, Mou S. 2003. Simultaneous determination of trace level bromate and chlorinated haloacetic acids in bottled drinking water by ion chromatography. Microchem J 75:
- Liu Y, Mou S. 2004. Determination of bromate and chlorinated haloacetic acids in bottled drinking water with chromatographic methods. Chemosphere 55:1253-8.
- Morr S, Cuartas E, Alwattar B, Lane JM. 2006. How much calcium is in your drinking water? A survey of calcium concentrations in bottled and tap water and their significance for medical treatment and drug administration. HSSJ 2:130-5.
- Nawrocki J, Dąbrowska A, Borcz A. 2002. Investigation of carbonyl compounds in bottled waters from Poland. Water Res 36:4893-901.
- Petraccia L, Liberati G, Masciullo SG, Grassi M, Fraioli A. 2006. Water, mineral waters and health. Clin Nutr 25:377-85.
- PL BN (Polish legalization Dz. U. Nr 276, poz. 2738) 2004. Available from: http://www.abc.com.pl/serwis/du/2004/2738.htm. Accessed Feb 2011.
- Polkowska Ż. 2003. Determination of selected tap water components in a large urban agglomeration (Gdansk). Ecol Chem Eng 10:335-50.
- Rosborg I, Nihlga B, Gerhardsson L, Gernersson M-L, Ohlin R, Olsson T. 2005. Concentrations of inorganic elements in bottled waters on the Swedish market. Environ Geochem Health 27:217-27
- Saad B, Pok FW, Sujari ANA., Saleh MI. 1998. Analysis of anions and cations in drinking water samples by capillary ion analysis. Food Chem 61:249-54.
- Saleh M, Ewane E, Jones J, Wilson B. 2001. Chemical evaluation of commercial bottled drinking water from Egypt. J Food Compos Anal 14:127-52.
- Schmid P, Kohler M, Meierhofer R, Luzi S, Wegelin M. 2008. Does the reuse of PET bottles during solar water disinfection pose a health risk due to the migration of plasticisers and other chemicals into the water? Water Res 42:5054-60.
- Shi Y, Zhang P, Wang Y, Shi J, Cai Y, Mou S, Jiang G. 2007. Perchlorate in sewage sludge, rice, bottled water and milk collected from different areas in China. Environ Inter 33: 955-62
- Shotyk W, Krachler M. 2007a. Contamination of bottled waters with antimony leaching from polyethylene terephthalate (PET) increase upon storage. Environ Sci Technol 41: 1560 - 3
- Shotyk W, Krachler M. 2007b. Lead in bottled waters: contamination from glass and comparison with pristine groundwater. Environ Sci Technol. 41:3508-13.
- Tombesi NB, Freije H. 2002. Application of solid-phase microextraction combined with gas chromatography-mass spectrometry to the determination of butylated hydroxytoluene in bottled drinking water. J Chrom A 963:179-83.
- USDA (U.S. Department of Agriculture). 2000. Biotechnology: USDA's Role. Washington, D.C.: U.S. Dept. Agriculture. Available from: www.usda.gov. Accessed Jan 27, 2002.
- van der Aa M. 2003. Classification of mineral water types and comparison with drinking water standards, Environ Geol 44:554-63.
- Westerhoff P, Prapaipong P, Shock P, Hillaireau A. 2008. Leaching of antimony from polyethylene terephthalate (PET) plastic using for bottled drinking water. Water Res 42:
- WHO (World Health Organization). 2008. Draft third edition of the WHO guidelines for drinking—water quality. Available from: http://www.who.int/water_sanitation_health/ dwq/fulltext.pdf. Accessed Feb 2011.